tensorplay.nn.modules.pooling
Classes
class AdaptiveAvgPool1d [source]
AdaptiveAvgPool1d(output_size: Union[int, NoneType, tuple[Optional[int], ...]]) -> NoneBases: _AdaptiveAvgPoolNd
Applies a 1D adaptive average pooling over an input signal composed of several input planes.
The output size is
Args
- output_size: the target output size
.
Shape
- Input:
or . - Output:
or , where .
Examples
# target output size of 5
m = nn.AdaptiveAvgPool1d(5)
input = tensorplay.randn(1, 64, 8)
output = m(input)Methods
__init__(self, output_size: Union[int, NoneType, tuple[Optional[int], ...]]) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AdaptiveAvgPool2d [source]
AdaptiveAvgPool2d(output_size: Union[int, NoneType, tuple[Optional[int], ...]]) -> NoneBases: _AdaptiveAvgPoolNd
Applies a 2D adaptive average pooling over an input signal composed of several input planes.
The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.
Args
- output_size: the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a
int, orNonewhich means the size will be the same as that of the input.
Shape
- Input:
or . - Output:
or , where .
Examples
# target output size of 5x7
m = nn.AdaptiveAvgPool2d((5, 7))
input = tensorplay.randn(1, 64, 8, 9)
output = m(input)
# target output size of 7x7 (square)
m = nn.AdaptiveAvgPool2d(7)
input = tensorplay.randn(1, 64, 10, 9)
output = m(input)
# target output size of 10x7
m = nn.AdaptiveAvgPool2d((None, 7))
input = tensorplay.randn(1, 64, 10, 9)
output = m(input)Methods
__init__(self, output_size: Union[int, NoneType, tuple[Optional[int], ...]]) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AdaptiveAvgPool3d [source]
AdaptiveAvgPool3d(output_size: Union[int, NoneType, tuple[Optional[int], ...]]) -> NoneBases: _AdaptiveAvgPoolNd
Applies a 3D adaptive average pooling over an input signal composed of several input planes.
The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.
Args
- output_size: the target output size of the form D x H x W. Can be a tuple (D, H, W) or a single number D for a cube D x D x D. D, H and W can be either a
int, orNonewhich means the size will be the same as that of the input.
Shape
- Input:
or . - Output:
or , where .
Examples
# target output size of 5x7x9
m = nn.AdaptiveAvgPool3d((5, 7, 9))
input = tensorplay.randn(1, 64, 8, 9, 10)
output = m(input)
# target output size of 7x7x7 (cube)
m = nn.AdaptiveAvgPool3d(7)
input = tensorplay.randn(1, 64, 10, 9, 8)
output = m(input)
# target output size of 7x9x8
m = nn.AdaptiveAvgPool3d((7, None, None))
input = tensorplay.randn(1, 64, 10, 9, 8)
output = m(input)Methods
__init__(self, output_size: Union[int, NoneType, tuple[Optional[int], ...]]) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AdaptiveMaxPool1d [source]
AdaptiveMaxPool1d(output_size: Union[int, NoneType, tuple[Optional[int], ...]], return_indices: bool = False) -> NoneBases: _AdaptiveMaxPoolNd
Applies a 1D adaptive max pooling over an input signal composed of several input planes.
The output size is
Args
- output_size: the target output size
. - return_indices: if
True, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool1d. Default:False
Shape
- Input:
or . - Output:
or , where .
Examples
# target output size of 5
m = nn.AdaptiveMaxPool1d(5)
input = tensorplay.randn(1, 64, 8)
output = m(input)Methods
__init__(self, output_size: Union[int, NoneType, tuple[Optional[int], ...]], return_indices: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AdaptiveMaxPool2d [source]
AdaptiveMaxPool2d(output_size: Union[int, NoneType, tuple[Optional[int], ...]], return_indices: bool = False) -> NoneBases: _AdaptiveMaxPoolNd
Applies a 2D adaptive max pooling over an input signal composed of several input planes.
The output is of size
Args
- output_size: the target output size of the image of the form
. Can be a tuple or a single for a square image . and can be either a int, orNonewhich means the size will be the same as that of the input. - return_indices: if
True, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool2d. Default:False
Shape
- Input:
or . - Output:
or , where .
Examples
# target output size of 5x7
m = nn.AdaptiveMaxPool2d((5, 7))
input = tensorplay.randn(1, 64, 8, 9)
output = m(input)
# target output size of 7x7 (square)
m = nn.AdaptiveMaxPool2d(7)
input = tensorplay.randn(1, 64, 10, 9)
output = m(input)
# target output size of 10x7
m = nn.AdaptiveMaxPool2d((None, 7))
input = tensorplay.randn(1, 64, 10, 9)
output = m(input)Methods
__init__(self, output_size: Union[int, NoneType, tuple[Optional[int], ...]], return_indices: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AdaptiveMaxPool3d [source]
AdaptiveMaxPool3d(output_size: Union[int, NoneType, tuple[Optional[int], ...]], return_indices: bool = False) -> NoneBases: _AdaptiveMaxPoolNd
Applies a 3D adaptive max pooling over an input signal composed of several input planes.
The output is of size
Args
- output_size: the target output size of the image of the form
. Can be a tuple or a single for a cube . , and can be either a int, orNonewhich means the size will be the same as that of the input. - return_indices: if
True, will return the indices along with the outputs. Useful to pass to nn.MaxUnpool3d. Default:False
Shape
- Input:
or . - Output:
or , where .
Examples
# target output size of 5x7x9
m = nn.AdaptiveMaxPool3d((5, 7, 9))
input = tensorplay.randn(1, 64, 8, 9, 10)
output = m(input)
# target output size of 7x7x7 (cube)
m = nn.AdaptiveMaxPool3d(7)
input = tensorplay.randn(1, 64, 10, 9, 8)
output = m(input)
# target output size of 7x9x8
m = nn.AdaptiveMaxPool3d((7, None, None))
input = tensorplay.randn(1, 64, 10, 9, 8)
output = m(input)Methods
__init__(self, output_size: Union[int, NoneType, tuple[Optional[int], ...]], return_indices: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AvgPool1d [source]
AvgPool1d(kernel_size: Union[int, tuple[int]], stride: Union[int, tuple[int]] = None, padding: Union[int, tuple[int]] = 0, ceil_mode: bool = False, count_include_pad: bool = True) -> NoneBases: _AvgPoolNd
Applies a 1D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size kernel_size
.. math
\text{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1}
\text{input}(N_i, C_j, \text{stride} \times l + m)If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.
Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
INFO
pad should be at most half of effective kernel size.
The parameters kernel_size, stride, padding can each be an int or a one-element tuple.
Args
- kernel_size: the size of the window
- stride: the stride of the window. Default value is
kernel_size - padding: implicit zero padding to be added on both sides
- ceil_mode: when True, will use
ceilinstead offloorto compute the output shape - count_include_pad: when True, will include the zero-padding in the averaging calculation
Shape
Input:
or . Output:
or , where .. math
L_{out} = \left\lfloor \frac{L_{in} +
2 \times \text{padding} - \text{kernel\_size}}{\text{stride}} + 1\right\rfloor
Per the note above, if ``ceil_mode`` is True and $(L_{out} - 1) \times \text{stride} \geq L_{in}
+ \text{padding}$, we skip the last window as it would start in the right padded region, resulting in
$L_{out}$ being reduced by one.Examples
# pool with window of size=3, stride=2
m = nn.AvgPool1d(3, stride=2)
m(tensorplay.tensor([[[1., 2, 3, 4, 5, 6, 7]]]))
tensor([[[2., 4., 6.]]])Methods
__init__(self, kernel_size: Union[int, tuple[int]], stride: Union[int, tuple[int]] = None, padding: Union[int, tuple[int]] = 0, ceil_mode: bool = False, count_include_pad: bool = True) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AvgPool2d [source]
AvgPool2d(kernel_size: Union[int, tuple[int, int]], stride: Union[int, tuple[int, int], NoneType] = None, padding: Union[int, tuple[int, int]] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> NoneBases: _AvgPoolNd
Applies a 2D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size kernel_size
.. math
out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1}
input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.
Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
INFO
pad should be at most half of effective kernel size.
The parameters kernel_size, stride, padding can either be:
- a single
intor a single-element tuple -- in which case the same value is used for the height and width dimension - a
tupleof two ints -- in which case, the firstintis used for the height dimension, and the secondintfor the width dimension
Args
- kernel_size: the size of the window
- stride: the stride of the window. Default value is
kernel_size - padding: implicit zero padding to be added on both sides
- ceil_mode: when True, will use
ceilinstead offloorto compute the output shape - count_include_pad: when True, will include the zero-padding in the averaging calculation
- divisor_override: if specified, it will be used as divisor, otherwise size of the pooling region will be used.
Shape
Input:
or . Output:
or , where .. math
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] -
\text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] -
\text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
Per the note above, if ``ceil_mode`` is True and $(H_{out} - 1)\times \text{stride}[0]\geq H_{in}
+ \text{padding}[0]$, we skip the last window as it would start in the bottom padded region,
resulting in $H_{out}$ being reduced by one.
The same applies for $W_{out}$.Examples
# pool of square window of size=3, stride=2
m = nn.AvgPool2d(3, stride=2)
# pool of non-square window
m = nn.AvgPool2d((3, 2), stride=(2, 1))
input = tensorplay.randn(20, 16, 50, 32)
output = m(input)Methods
__init__(self, kernel_size: Union[int, tuple[int, int]], stride: Union[int, tuple[int, int], NoneType] = None, padding: Union[int, tuple[int, int]] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class AvgPool3d [source]
AvgPool3d(kernel_size: Union[int, tuple[int, int, int]], stride: Union[int, tuple[int, int, int], NoneType] = None, padding: Union[int, tuple[int, int, int]] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> NoneBases: _AvgPoolNd
Applies a 3D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size kernel_size
.. math
\begin{aligned}
\text{out}(N_i, C_j, d, h, w) ={} & \sum_{k=0}^{kD-1} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} \\
& \frac{\text{input}(N_i, C_j, \text{stride}[0] \times d + k,
\text{stride}[1] \times h + m, \text{stride}[2] \times w + n)}
{kD \times kH \times kW}
\end{aligned}If padding is non-zero, then the input is implicitly zero-padded on all three sides for padding number of points.
Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
INFO
pad should be at most half of effective kernel size.
The parameters kernel_size, stride can either be:
- a single
int-- in which case the same value is used for the depth, height and width dimension - a
tupleof three ints -- in which case, the firstintis used for the depth dimension, the secondintfor the height dimension and the thirdintfor the width dimension
Args
- kernel_size: the size of the window
- stride: the stride of the window. Default value is
kernel_size - padding: implicit zero padding to be added on all three sides
- ceil_mode: when True, will use
ceilinstead offloorto compute the output shape - count_include_pad: when True, will include the zero-padding in the averaging calculation
- divisor_override: if specified, it will be used as divisor, otherwise
kernel_sizewill be used
Shape
Input:
or . Output:
or , where .. math
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] -
\text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] -
\text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] -
\text{kernel\_size}[2]}{\text{stride}[2]} + 1\right\rfloor
Per the note above, if ``ceil_mode`` is True and $(D_{out} - 1)\times \text{stride}[0]\geq D_{in}
+ \text{padding}[0]$, we skip the last window as it would start in the padded region,
resulting in $D_{out}$ being reduced by one.
The same applies for $W_{out}$ and $H_{out}$.Examples
# pool of square window of size=3, stride=2
m = nn.AvgPool3d(3, stride=2)
# pool of non-square window
m = nn.AvgPool3d((3, 2, 2), stride=(2, 1, 2))
input = tensorplay.randn(20, 16, 50, 44, 31)
output = m(input)Methods
__init__(self, kernel_size: Union[int, tuple[int, int, int]], stride: Union[int, tuple[int, int, int], NoneType] = None, padding: Union[int, tuple[int, int, int]] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class FractionalMaxPool2d [source]
FractionalMaxPool2d(kernel_size: Union[int, tuple[int, int]], output_size: Union[int, tuple[int, int], NoneType] = None, output_ratio: Union[float, tuple[float, float], NoneType] = None, return_indices: bool = False, _random_samples=None) -> NoneBases: Module
Applies a 2D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper Fractional MaxPooling_ by Ben Graham
The max-pooling operation is applied in
.. note:: Exactly one of output_size or output_ratio must be defined.
Args
- kernel_size: the size of the window to take a max over. Can be a single number k (for a square kernel of k x k) or a tuple
(kh, kw) - output_size: the target output size of the image of the form
oH x oW. Can be a tuple(oH, oW)or a single number oH for a square imageoH x oH. Note that we must haveand - output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1). Note that we must have
and - return_indices: if
True, will return the indices along with the outputs. Useful to pass tonn.MaxUnpool2d. Default:False
Shape
- Input:
or . - Output:
or , where or .
Examples
# pool of square window of size=3, and target output size 13x12
m = nn.FractionalMaxPool2d(3, output_size=(13, 12))
# pool of square window and target output size being half of input image size
m = nn.FractionalMaxPool2d(3, output_ratio=(0.5, 0.5))
input = tensorplay.randn(20, 16, 50, 32)
output = m(input).. _Fractional MaxPooling:
- https: //arxiv.org/abs/1412.6071
Methods
__init__(self, kernel_size: Union[int, tuple[int, int]], output_size: Union[int, tuple[int, int], NoneType] = None, output_ratio: Union[float, tuple[float, float], NoneType] = None, return_indices: bool = False, _random_samples=None) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Define the computation performed at every call.
Should be overridden by all subclasses.
INFO
Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class FractionalMaxPool3d [source]
FractionalMaxPool3d(kernel_size: Union[int, tuple[int, int, int]], output_size: Union[int, tuple[int, int, int], NoneType] = None, output_ratio: Union[float, tuple[float, float, float], NoneType] = None, return_indices: bool = False, _random_samples=None) -> NoneBases: Module
Applies a 3D fractional max pooling over an input signal composed of several input planes.
Fractional MaxPooling is described in detail in the paper Fractional MaxPooling_ by Ben Graham
The max-pooling operation is applied in
.. note:: Exactly one of output_size or output_ratio must be defined.
Args
- kernel_size: the size of the window to take a max over. Can be a single number
k(for a square kernel ofk x k x k) or a tuple(kt x kh x kw),kmust greater than 0. - output_size: the target output size of the image of the form
oT x oH x oW. Can be a tuple(oT, oH, oW)or a single number oH for a square imageoH x oH x oH - output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given. This has to be a number or tuple in the range (0, 1)
- return_indices: if
True, will return the indices along with the outputs. Useful to pass tonn.MaxUnpool3d. Default:False
Shape
- Input:
or . - Output:
or , where or
Examples
# pool of cubic window of size=3, and target output size 13x12x11
m = nn.FractionalMaxPool3d(3, output_size=(13, 12, 11))
# pool of cubic window and target output size being half of input size
m = nn.FractionalMaxPool3d(3, output_ratio=(0.5, 0.5, 0.5))
input = tensorplay.randn(20, 16, 50, 32, 16)
output = m(input).. _Fractional MaxPooling:
- https: //arxiv.org/abs/1412.6071
Methods
__init__(self, kernel_size: Union[int, tuple[int, int, int]], output_size: Union[int, tuple[int, int, int], NoneType] = None, output_ratio: Union[float, tuple[float, float, float], NoneType] = None, return_indices: bool = False, _random_samples=None) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Define the computation performed at every call.
Should be overridden by all subclasses.
INFO
Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class LPPool1d [source]
LPPool1d(norm_type: float, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, ceil_mode: bool = False) -> NoneBases: _LPPoolNd
Applies a 1D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
.. math
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}- At p =
, one gets Max Pooling - At p = 1, one gets Sum Pooling (which is proportional to Average Pooling)
.. note:: If the sum to the power of p is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.
Args
- kernel_size: a single int, the size of the window
- stride: a single int, the stride of the window. Default value is
kernel_size - ceil_mode: when True, will use
ceilinstead offloorto compute the output shape
Shape
Input:
or . Output:
or , where .. math
L_{out} = \left\lfloor\frac{L_{in} - \text{kernel\_size}}{\text{stride}} + 1\right\rfloorExamples
# power-2 pool of window of length 3, with stride 2.
m = nn.LPPool1d(2, 3, stride=2)
input = tensorplay.randn(20, 16, 50)
output = m(input)Methods
__init__(self, norm_type: float, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, ceil_mode: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class LPPool2d [source]
LPPool2d(norm_type: float, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, ceil_mode: bool = False) -> NoneBases: _LPPoolNd
Applies a 2D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
.. math
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}- At p =
, one gets Max Pooling - At p = 1, one gets Sum Pooling (which is proportional to average pooling)
The parameters kernel_size, stride can either be:
- a single
int-- in which case the same value is used for the height and width dimension - a
tupleof two ints -- in which case, the firstintis used for the height dimension, and the secondintfor the width dimension
.. note:: If the sum to the power of p is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.
Args
- kernel_size: the size of the window
- stride: the stride of the window. Default value is
kernel_size - ceil_mode: when True, will use
ceilinstead offloorto compute the output shape
Shape
Input:
or . Output:
or , where .. math
H_{out} = \left\lfloor\frac{H_{in} - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloorExamples
# power-2 pool of square window of size=3, stride=2
m = nn.LPPool2d(2, 3, stride=2)
# pool of non-square window of power 1.2
m = nn.LPPool2d(1.2, (3, 2), stride=(2, 1))
input = tensorplay.randn(20, 16, 50, 32)
output = m(input)Methods
__init__(self, norm_type: float, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, ceil_mode: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class LPPool3d [source]
LPPool3d(norm_type: float, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, ceil_mode: bool = False) -> NoneBases: _LPPoolNd
Applies a 3D power-average pooling over an input signal composed of several input planes.
On each window, the function computed is:
.. math
f(X) = \sqrt[p]{\sum_{x \in X} x^{p}}- At p =
, one gets Max Pooling - At p = 1, one gets Sum Pooling (which is proportional to average pooling)
The parameters kernel_size, stride can either be:
- a single
int-- in which case the same value is used for the height, width and depth dimension - a
tupleof three ints -- in which case, the firstintis used for the depth dimension, the secondintfor the height dimension and the thirdintfor the width dimension
.. note:: If the sum to the power of p is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case.
Args
- kernel_size: the size of the window
- stride: the stride of the window. Default value is
kernel_size - ceil_mode: when True, will use
ceilinstead offloorto compute the output shape
Shape
Input:
or . Output:
or , where .. math
D_{out} = \left\lfloor\frac{D_{in} - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
.. math::
H_{out} = \left\lfloor\frac{H_{in} - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} - \text{kernel\_size}[2]}{\text{stride}[2]} + 1\right\rfloorExamples
# power-2 pool of square window of size=3, stride=2
m = nn.LPPool3d(2, 3, stride=2)
# pool of non-square window of power 1.2
m = nn.LPPool3d(1.2, (3, 2, 2), stride=(2, 1, 2))
input = tensorplay.randn(20, 16, 50, 44, 31)
output = m(input)Methods
__init__(self, norm_type: float, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, ceil_mode: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class MaxPool1d [source]
MaxPool1d(kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, padding: Union[int, tuple[int, ...]] = 0, dilation: Union[int, tuple[int, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) -> NoneBases: _MaxPoolNd
Applies a 1D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size
.. math
out(N_i, C_j, k) = \max_{m=0, \ldots, \text{kernel\_size} - 1}
input(N_i, C_j, stride \times k + m)If padding is non-zero, then the input is implicitly padded with negative infinity on both sides for padding number of points. dilation is the stride between the elements within the sliding window. This link_ has a nice visualization of the pooling parameters.
Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
Args
- kernel_size: The size of the sliding window, must be > 0.
- stride: The stride of the sliding window, must be > 0. Default value is
kernel_size. - padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
- dilation: The stride between elements within a sliding window, must be > 0.
- return_indices: If
True, will return the argmax along with the max values. Useful fortensorplay.nn.MaxUnpool1dlater - ceil_mode: If
True, will useceilinstead offloorto compute the output shape. This ensures that every element in the input tensor is covered by a sliding window.
Shape
Input:
or . Output:
or , where ``ceil_mode = False`` .. math
L_{out} = \left\lfloor \frac{L_{in} + 2 \times \text{padding} - \text{dilation}
\times (\text{kernel\_size} - 1) - 1}{\text{stride}}\right\rfloor + 1
where ``ceil_mode = True``
.. math::
L_{out} = \left\lceil \frac{L_{in} + 2 \times \text{padding} - \text{dilation}
\times (\text{kernel\_size} - 1) - 1 + (stride - 1)}{\text{stride}}\right\rceil + 1
- Ensure that the last pooling starts inside the image, make $L_{out} = L_{out} - 1$
when $(L_{out} - 1) * \text{stride} >= L_{in} + \text{padding}$.Examples
# pool of size=3, stride=2
m = nn.MaxPool1d(3, stride=2)
input = tensorplay.randn(20, 16, 50)
output = m(input)Methods
__init__(self, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, padding: Union[int, tuple[int, ...]] = 0, dilation: Union[int, tuple[int, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class MaxPool2d [source]
MaxPool2d(kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, padding: Union[int, tuple[int, ...]] = 0, dilation: Union[int, tuple[int, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) -> NoneBases: _MaxPoolNd
Applies a 2D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size kernel_size
.. math
\begin{aligned}
out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\
& \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
\text{stride[1]} \times w + n)
\end{aligned}If padding is non-zero, then the input is implicitly padded with negative infinity on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link_ has a nice visualization of what dilation does.
Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
The parameters kernel_size, stride, padding, dilation can either be:
- a single
int-- in which case the same value is used for the height and width dimension - a
tupleof two ints -- in which case, the firstintis used for the height dimension, and the secondintfor the width dimension
Args
- kernel_size: the size of the window to take a max over
- stride: the stride of the window. Default value is
kernel_size - padding: Implicit negative infinity padding to be added on both sides
- dilation: a parameter that controls the stride of elements in the window
- return_indices: if
True, will return the max indices along with the outputs. Useful fortensorplay.nn.MaxUnpool2dlater - ceil_mode: when True, will use
ceilinstead offloorto compute the output shape
Shape
Input:
or Output:
or , where .. math
H_{out} = \left\lfloor\frac{H_{in} + 2 * \text{padding[0]} - \text{dilation[0]}
\times (\text{kernel\_size[0]} - 1) - 1}{\text{stride[0]}} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 * \text{padding[1]} - \text{dilation[1]}
\times (\text{kernel\_size[1]} - 1) - 1}{\text{stride[1]}} + 1\right\rfloorExamples
# pool of square window of size=3, stride=2
m = nn.MaxPool2d(3, stride=2)
# pool of non-square window
m = nn.MaxPool2d((3, 2), stride=(2, 1))
input = tensorplay.randn(20, 16, 50, 32)
output = m(input)Methods
__init__(self, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, padding: Union[int, tuple[int, ...]] = 0, dilation: Union[int, tuple[int, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class MaxPool3d [source]
MaxPool3d(kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, padding: Union[int, tuple[int, ...]] = 0, dilation: Union[int, tuple[int, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) -> NoneBases: _MaxPoolNd
Applies a 3D max pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size kernel_size
.. math
\begin{aligned}
\text{out}(N_i, C_j, d, h, w) ={} & \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\
& \text{input}(N_i, C_j, \text{stride[0]} \times d + k,
\text{stride[1]} \times h + m, \text{stride[2]} \times w + n)
\end{aligned}If padding is non-zero, then the input is implicitly padded with negative infinity on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link_ has a nice visualization of what dilation does.
Note
When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
or the input. Sliding windows that would start in the right padded region are ignored.
The parameters kernel_size, stride, padding, dilation can either be:
- a single
int-- in which case the same value is used for the depth, height and width dimension - a
tupleof three ints -- in which case, the firstintis used for the depth dimension, the secondintfor the height dimension and the thirdintfor the width dimension
Args
- kernel_size: the size of the window to take a max over
- stride: the stride of the window. Default value is
kernel_size - padding: Implicit negative infinity padding to be added on all three sides
- dilation: a parameter that controls the stride of elements in the window
- return_indices: if
True, will return the max indices along with the outputs. Useful fortensorplay.nn.MaxUnpool3dlater - ceil_mode: when True, will use
ceilinstead offloorto compute the output shape
Shape
Input:
or . Output:
or , where .. math
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times
(\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
.. math::
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times
(\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
.. math::
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times
(\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloorExamples
# pool of square window of size=3, stride=2
m = nn.MaxPool3d(3, stride=2)
# pool of non-square window
m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2))
input = tensorplay.randn(20, 16, 50, 44, 31)
output = m(input)Methods
__init__(self, kernel_size: Union[int, tuple[int, ...]], stride: Union[int, tuple[int, ...], NoneType] = None, padding: Union[int, tuple[int, ...]] = 0, dilation: Union[int, tuple[int, ...]] = 1, return_indices: bool = False, ceil_mode: bool = False) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase) [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class MaxUnpool1d [source]
MaxUnpool1d(kernel_size: Union[int, tuple[int]], stride: Union[int, tuple[int], NoneType] = None, padding: Union[int, tuple[int]] = 0) -> NoneBases: _MaxUnpoolNd
Computes a partial inverse of MaxPool1d.
MaxPool1d is not fully invertible, since the non-maximal values are lost.
MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.
Note
This operation may behave nondeterministically when the input indices has repeat values.
.. note:: MaxPool1d can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument output_size in the forward call. See the Inputs and Example below.
Args
- kernel_size (
int or tuple): Size of the max pooling window. - stride (
int or tuple): Stride of the max pooling window. It is set tokernel_sizeby default. - padding (
int or tuple): Padding that was added to the input
Inputs:
input: the input Tensor to invertindices: the indices given out by~tensorplay.nn.MaxPool1doutput_size(optional): the targeted output size
Shape
Input:
or . Output:
or , where .. math
H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{kernel\_size}[0]
or as given by `output_size` in the call operatorExample
# xdoctest: +IGNORE_WANT("do other tests modify the global state?")
pool = nn.MaxPool1d(2, stride=2, return_indices=True)
unpool = nn.MaxUnpool1d(2, stride=2)
input = tensorplay.tensor([[[1., 2, 3, 4, 5, 6, 7, 8]]])
output, indices = pool(input)
unpool(output, indices)
tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8.]]])
# Example showcasing the use of output_size
input = tensorplay.tensor([[[1., 2, 3, 4, 5, 6, 7, 8, 9]]])
output, indices = pool(input)
unpool(output, indices, output_size=input.size())
tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8., 0.]]])
unpool(output, indices)
tensor([[[ 0., 2., 0., 4., 0., 6., 0., 8.]]])Methods
__init__(self, kernel_size: Union[int, tuple[int]], stride: Union[int, tuple[int], NoneType] = None, padding: Union[int, tuple[int]] = 0) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase, indices: tensorplay._C.TensorBase, output_size: Optional[list[int]] = None) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class MaxUnpool2d [source]
MaxUnpool2d(kernel_size: Union[int, tuple[int, int]], stride: Union[int, tuple[int, int], NoneType] = None, padding: Union[int, tuple[int, int]] = 0) -> NoneBases: _MaxUnpoolNd
Computes a partial inverse of MaxPool2d.
MaxPool2d is not fully invertible, since the non-maximal values are lost.
MaxUnpool2d takes in as input the output of MaxPool2d including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.
Note
This operation may behave nondeterministically when the input indices has repeat values.
.. note:: MaxPool2d can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument output_size in the forward call. See the Inputs and Example below.
Args
- kernel_size (
int or tuple): Size of the max pooling window. - stride (
int or tuple): Stride of the max pooling window. It is set tokernel_sizeby default. - padding (
int or tuple): Padding that was added to the input
Inputs:
input: the input Tensor to invertindices: the indices given out by~tensorplay.nn.MaxPool2doutput_size(optional): the targeted output size
Shape
Input:
or . Output:
or , where .. math
H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}
.. math::
W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}
or as given by `output_size` in the call operatorExample
pool = nn.MaxPool2d(2, stride=2, return_indices=True)
unpool = nn.MaxUnpool2d(2, stride=2)
input = tensorplay.tensor([[[[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[13., 14., 15., 16.]]]])
output, indices = pool(input)
unpool(output, indices)
tensor([[[[ 0., 0., 0., 0.],
[ 0., 6., 0., 8.],
[ 0., 0., 0., 0.],
[ 0., 14., 0., 16.]]]])
# Now using output_size to resolve an ambiguous size for the inverse
input = tensorplay.tensor([[[[ 1., 2., 3., 4., 5.],
[ 6., 7., 8., 9., 10.],
[11., 12., 13., 14., 15.],
[16., 17., 18., 19., 20.]]]])
output, indices = pool(input)
# This call will not work without specifying output_size
unpool(output, indices, output_size=input.size())
tensor([[[[ 0., 0., 0., 0., 0.],
[ 0., 7., 0., 9., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 17., 0., 19., 0.]]]])Methods
__init__(self, kernel_size: Union[int, tuple[int, int]], stride: Union[int, tuple[int, int], NoneType] = None, padding: Union[int, tuple[int, int]] = 0) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase, indices: tensorplay._C.TensorBase, output_size: Optional[list[int]] = None) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
class MaxUnpool3d [source]
MaxUnpool3d(kernel_size: Union[int, tuple[int, int, int]], stride: Union[int, tuple[int, int, int], NoneType] = None, padding: Union[int, tuple[int, int, int]] = 0) -> NoneBases: _MaxUnpoolNd
Computes a partial inverse of MaxPool3d.
MaxPool3d is not fully invertible, since the non-maximal values are lost. MaxUnpool3d takes in as input the output of MaxPool3d including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.
Note
This operation may behave nondeterministically when the input indices has repeat values.
.. note:: MaxPool3d can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument output_size in the forward call. See the Inputs section below.
Args
- kernel_size (
int or tuple): Size of the max pooling window. - stride (
int or tuple): Stride of the max pooling window. It is set tokernel_sizeby default. - padding (
int or tuple): Padding that was added to the input
Inputs:
input: the input Tensor to invertindices: the indices given out by~tensorplay.nn.MaxPool3doutput_size(optional): the targeted output size
Shape
Input:
or . Output:
or , where .. math
D_{out} = (D_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}
.. math::
H_{out} = (H_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}
.. math::
W_{out} = (W_{in} - 1) \times \text{stride[2]} - 2 \times \text{padding[2]} + \text{kernel\_size[2]}
or as given by `output_size` in the call operatorExample
# pool of square window of size=3, stride=2
pool = nn.MaxPool3d(3, stride=2, return_indices=True)
unpool = nn.MaxUnpool3d(3, stride=2)
output, indices = pool(tensorplay.randn(20, 16, 51, 33, 15))
unpooled_output = unpool(output, indices)
unpooled_output.size()
tensorplay.Size([20, 16, 51, 33, 15])Methods
__init__(self, kernel_size: Union[int, tuple[int, int, int]], stride: Union[int, tuple[int, int, int], NoneType] = None, padding: Union[int, tuple[int, int, int]] = 0) -> None [source]
Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Add a child module to the current module.
The module can be accessed as an attribute using the given name.
Args
- name (
str): name of the child module. The child module can be accessed from this module using the given name - module (
Module): child module to be added to the module.
apply(self, fn: Callable[[ForwardRef('Module')], NoneType]) -> Self [source]
Apply fn recursively to every submodule (as returned by .children()) as well as self.
Typical use includes initializing the parameters of a model (see also nn-init-doc).
Args
- fn (``Module
-> None): function to be applied to each submodule
Returns
- Module: self
Example
@tensorplay.no_grad()
def init_weights(m):
print(m)
if type(m) == nn.Linear:
m.weight.fill_(1.0)
print(m.weight)
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)bfloat16(self) -> Self [source]
Casts all floating point parameters and buffers to bfloat16 datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
buffers(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay._C.TensorBase] [source]
Return an iterator over module buffers.
Args
- recurse (
bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
Yields
tensorplay.Tensor: module buffer
Example
# xdoctest: +SKIP("undefined vars")
for buf in model.buffers():
print(type(buf), buf.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)children(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over immediate children modules.
Yields
- Module: a child module
compile(self, *args, **kwargs) [source]
Compile this Module's forward using tensorplay.compile.
This Module's __call__ method is compiled and all arguments are passed as-is to tensorplay.compile.
See tensorplay.compile for details on the arguments for this function.
cpu(self) -> Self [source]
Move all model parameters and buffers to the CPU.
INFO
This method modifies the module in-place.
Returns
- Module: self
cuda(self, device: Union[int, tensorplay.Device, NoneType] = None) -> Self [source]
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing the optimizer if the module will live on GPU while being optimized.
INFO
This method modifies the module in-place.
Args
- device (
int, optional): if specified, all parameters will be copied to that device
Returns
- Module: self
double(self) -> Self [source]
Casts all floating point parameters and buffers to double datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
eval(self) -> Self [source]
Set the module in evaluation mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e. whether they are affected, e.g. Dropout, BatchNorm, etc.
This is equivalent with self.train(False) <tensorplay.nn.Module.train>.
See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
Returns
- Module: self
extra_repr(self) -> str [source]
Return the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float(self) -> Self [source]
Casts all floating point parameters and buffers to float datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
forward(self, input: tensorplay._C.TensorBase, indices: tensorplay._C.TensorBase, output_size: Optional[list[int]] = None) -> tensorplay._C.TensorBase [source]
Runs the forward pass.
get_buffer(self, target: str) -> 'Tensor' [source]
Return the buffer given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the buffer to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.Tensor: The buffer referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
get_extra_state(self) -> Any [source]
Return any extra state to include in the module's state_dict.
Implement this and a corresponding set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().
Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
Returns
- object: Any extra state to store in the module's state_dict
get_parameter(self, target: str) -> 'Parameter' [source]
Return the parameter given by target if it exists, otherwise throw an error.
See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.
Args
- target: The fully-qualified string name of the Parameter to look for. (See
get_submodulefor how to specify a fully-qualified string.)
Returns
tensorplay.nn.Parameter: The Parameter referenced by ``target``
Raises
- AttributeError: If the target string references an invalid path or resolves to something that is not an
nn.Parameter
get_submodule(self, target: str) -> 'Module' [source]
Return the submodule given by target if it exists, otherwise throw an error.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(The diagram shows an nn.Module A. A which has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").
The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
Returns
tensorplay.nn.Module: The submodule referenced by ``target``
Raises
- AttributeError: If at any point along the path resulting from the target string the (sub)path resolves to a non-existent attribute name or an object that is not an instance of
nn.Module.
half(self) -> Self [source]
Casts all floating point parameters and buffers to half datatype.
INFO
This method modifies the module in-place.
Returns
- Module: self
load_state_dict(self, state_dict: collections.abc.Mapping[str, typing.Any], strict: bool = True, assign: bool = False) [source]
Copy parameters and buffers from state_dict into this module and its descendants.
If strict is True, then the keys of state_dict must exactly match the keys returned by this module's ~tensorplay.nn.Module.state_dict function.
DANGER
If assign is True the optimizer must be created after the call to load_state_dict unless ~tensorplay.__future__.get_swap_module_params_on_conversion is True.
Args
- state_dict (
dict): a dict containing parameters and persistent buffers. - strict (
bool, optional): whether to strictly enforce that the keys instate_dictmatch the keys returned by this module's~tensorplay.nn.Module.state_dictfunction. Default:True - assign (
bool, optional): When set toFalse, the properties of the tensors in the current module are preserved whereas setting it toTruepreserves properties of the Tensors in the state dict. The only exception is therequires_gradfield of~tensorplay.nn.Parameterfor which the value from the module is preserved. Default:False
Returns
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* ``missing_keys`` is a list of str containing any keys that are expected
by this module but missing from the provided ``state_dict``.
* ``unexpected_keys`` is a list of str containing the keys that are not
expected by this module but present in the provided ``state_dict``.
Note
If a parameter or buffer is registered as ``None`` and its corresponding key
exists in `state_dict`, `load_state_dict` will raise a
``RuntimeError``.
modules(self) -> collections.abc.Iterator['Module'] [source]
Return an iterator over all modules in the network.
Yields
- Module: a module in the network
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.modules()):
print(idx, '->', m)
0 -> Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay._C.TensorBase]] [source]
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args
- prefix (
str): prefix to prepend to all buffer names. - recurse (
bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. - remove_duplicate (
bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.
Yields
(str, tensorplay.Tensor): Tuple containing the name and buffer
Example
# xdoctest: +SKIP("undefined vars")
for name, buf in self.named_buffers():
if name in ['running_var']:
print(buf.size())named_children(self) -> collections.abc.Iterator[tuple[str, 'Module']] [source]
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields
(str, Module): Tuple containing a name and child module
Example
# xdoctest: +SKIP("undefined vars")
for name, module in model.named_children():
if name in ['conv4', 'conv5']:
print(module)named_modules(self, memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True) [source]
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args
- memo: a memo to store the set of modules already added to the result
- prefix: a prefix that will be added to the name of the module
- remove_duplicate: whether to remove the duplicated module instances in the result or not
Yields
(str, Module): Tuple of name and module
Note
Duplicate modules are returned only once. In the following
example, ``l`` will be returned only once.
Example
l = nn.Linear(2, 2)
net = nn.Sequential(l, l)
for idx, m in enumerate(net.named_modules()):
print(idx, '->', m)
0 -> ('', Sequential(
(0): Linear(in_features=2, out_features=2, bias=True)
(1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> collections.abc.Iterator[tuple[str, tensorplay.nn.parameter.Parameter]] [source]
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args
- prefix (
str): prefix to prepend to all parameter names. - recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. - remove_duplicate (
bool, optional): whether to remove the duplicated parameters in the result. Defaults to True.
Yields
(str, Parameter): Tuple containing the name and parameter
Example
# xdoctest: +SKIP("undefined vars")
for name, param in self.named_parameters():
if name in ['bias']:
print(param.size())parameters(self, recurse: bool = True) -> collections.abc.Iterator[tensorplay.nn.parameter.Parameter] [source]
Return an iterator over module parameters.
This is typically passed to an optimizer.
Args
- recurse (
bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
Yields
- Parameter: module parameter
Example
# xdoctest: +SKIP("undefined vars")
for param in model.parameters():
print(type(param), param.size())
<class 'tensorplay.Tensor'> (20L,)
<class 'tensorplay.Tensor'> (20L, 1L, 5L, 5L)register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]]) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
This function is deprecated in favor of ~tensorplay.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_buffer(self, name: str, tensor: Optional[tensorplay._C.TensorBase], persistent: bool = True) -> None [source]
Add a buffer to the module.
This is typically used to register a buffer that should not be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's state_dict.
Buffers can be accessed as attributes using given names.
Args
- name (
str): name of the buffer. The buffer can be accessed from this module using the given name - tensor (
Tensor or None): buffer to be registered. IfNone, then operations that run on buffers, such ascuda, are ignored. IfNone, the buffer is not included in the module'sstate_dict. - persistent (
bool): whether the buffer is part of this module'sstate_dict.
Example
# xdoctest: +SKIP("undefined vars")
self.register_buffer('running_mean', tensorplay.zeros(num_features))register_forward_hook(self, hook: Union[Callable[[~T, tuple[Any, ...], Any], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward hook on the module.
The hook will be called every time after forward has computed an output.
If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward is called. The hook should have the following signature
hook(module, args, output) -> None or modified outputIf with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature
hook(module, args, kwargs, output) -> None or modified outputArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): IfTrue, the providedhookwill be fired before all existingforwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforwardhooks on thistensorplay.nn.Module. Note that globalforwardhooks registered withregister_module_forward_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): IfTrue, thehookwill be passed the kwargs given to the forward function. - Default:
False - always_call (
bool): IfTruethehookwill be run regardless of whether an exception is raised while calling the Module. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_forward_pre_hook(self, hook: Union[Callable[[~T, tuple[Any, ...]], Optional[Any]], Callable[[~T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a forward pre-hook on the module.
The hook will be called every time before forward is invoked.
If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature
hook(module, args) -> None or modified inputIf with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature
hook(module, args, kwargs) -> None or a tuple of modified input and kwargsArgs
- hook (
Callable): The user defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingforward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingforward_prehooks on thistensorplay.nn.Module. Note that globalforward_prehooks registered withregister_module_forward_pre_hookwill fire before all hooks registered by this method. - Default:
False - with_kwargs (
bool): If true, thehookwill be passed the kwargs given to the forward function. - Default:
False
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase], Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, and its firing rules are as follows:
1. Ordinarily, the hook fires when the gradients are computed with respect to the module inputs.
2. If none of the module inputs require gradients, the hook will fire when the gradients are computed
with respect to module outputs.
3. If none of the module outputs require gradients, then the hooks will not fire.
The hook should have the following signature
hook(module, grad_input, grad_output) -> tuple(Tensor) or NoneThe grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackwardhooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackwardhooks on thistensorplay.nn.Module. Note that globalbackwardhooks registered withregister_module_full_backward_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], Union[NoneType, tuple[tensorplay._C.TensorBase, ...], tensorplay._C.TensorBase]], prepend: bool = False) -> tensorplay.utils.hooks.RemovableHandle [source]
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature
hook(module, grad_output) -> tuple[Tensor] or NoneThe grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.
For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.
.. warning
Modifying inputs inplace is not allowed when using backward hooks and
will raise an error.Args
- hook (
Callable): The user-defined hook to be registered. - prepend (
bool): If true, the providedhookwill be fired before all existingbackward_prehooks on thistensorplay.nn.Module. Otherwise, the providedhookwill be fired after all existingbackward_prehooks on thistensorplay.nn.Module. Note that globalbackward_prehooks registered withregister_module_full_backward_pre_hookwill fire before all hooks registered by this method.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_post_hook(self, hook) [source]
Register a post-hook to be run after module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, incompatible_keys) -> NoneThe module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.
The given incompatible_keys can be modified inplace if needed.
Note that the checks performed when calling load_state_dict with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.
Returns
`tensorplay.utils.hooks.RemovableHandle`:
a handle that can be used to remove the added hook by calling
``handle.remove()``
register_load_state_dict_pre_hook(self, hook) [source]
Register a pre-hook to be run before module's ~nn.Module.load_state_dict is called.
It should have the following signature
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950Arguments
- hook (
Callable): Callable hook that will be invoked before loading the state dict.
register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None [source]
Alias for add_module.
register_parameter(self, name: str, param: Optional[tensorplay.nn.parameter.Parameter]) -> None [source]
Add a parameter to the module.
The parameter can be accessed as an attribute using given name.
Args
- name (
str): name of the parameter. The parameter can be accessed from this module using the given name - param (
Parameter or None): parameter to be added to the module. IfNone, then operations that run on parameters, such ascuda, are ignored. IfNone, the parameter is not included in the module'sstate_dict.
register_state_dict_post_hook(self, hook) [source]
Register a post-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, state_dict, prefix, local_metadata) -> NoneThe registered hooks can modify the state_dict inplace.
register_state_dict_pre_hook(self, hook) [source]
Register a pre-hook for the ~tensorplay.nn.Module.state_dict method.
It should have the following signature
hook(module, prefix, keep_vars) -> NoneThe registered hooks can be used to perform pre-processing before the state_dict call is made.
requires_grad_(self, requires_grad: bool = True) -> Self [source]
Change if autograd should record operations on parameters in this module.
This method sets the parameters' requires_grad attributes in-place.
This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
Args
- requires_grad (
bool): whether autograd should record operations on parameters in this module. Default:True.
Returns
- Module: self
set_extra_state(self, state: Any) -> None [source]
Set extra state contained in the loaded state_dict.
This function is called from load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state for your module if you need to store extra state within its state_dict.
Args
- state (
dict): Extra state from thestate_dict
set_submodule(self, target: str, module: 'Module', strict: bool = False) -> None [source]
Set the submodule given by target if it exists, otherwise throw an error.
INFO
If strict is set to False (default), the method will replace an existing submodule or create a new submodule if the parent module exists. If strict is set to True, the method will only attempt to replace an existing submodule and throw an error if the submodule does not exist.
For example, let's say you have an nn.Module A that looks like this:
.. code-block:: text
- A (
(net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)
To override the Conv2d with a new submodule Linear, you could call set_submodule("net_b.net_c.conv", nn.Linear(1, 1)) where strict could be True or False
To add a new submodule Conv2d to the existing net_b module, you would call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1)).
In the above if you set strict=True and call set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True), an AttributeError will be raised because net_b does not have a submodule named conv.
Args
- target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- module: The module to set the submodule to.
- strict: If
False, the method will replace an existing submodule or create a new submodule if the parent module exists. IfTrue, the method will only attempt to replace an existing submodule and throw an error if the submodule doesn't already exist.
Raises
- ValueError: If the
targetstring is empty or ifmoduleis not an instance ofnn.Module. - AttributeError: If at any point along the path resulting from the
targetstring the (sub)path resolves to a non-existent attribute name or an object that is not an instance ofnn.Module.
share_memory(self) -> Self [source]
See tensorplay.Tensor.share_memory_.
state_dict(self, *args, destination=None, prefix='', keep_vars=False) [source]
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.
INFO
The returned object is a shallow copy. It contains references to the module's parameters and buffers.
DANGER
Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.
DANGER
Please avoid the use of argument destination as it is not designed for end-users.
Args
- destination (
dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, anOrderedDictwill be created and returned. - Default:
None. - prefix (
str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default:''. - keep_vars (
bool, optional): by default the~tensorplay.Tensors returned in the state dict are detached from autograd. If it's set toTrue, detaching will not be performed. - Default:
False.
Returns
- dict: a dictionary containing a whole state of the module
Example
# xdoctest: +SKIP("undefined vars")
module.state_dict().keys()
['bias', 'weight']to(self, *args, **kwargs) [source]
Move and/or cast the parameters and buffers.
This can be called as
.. function:: to(device=None, dtype=None, non_blocking=False) :noindex:
.. function:: to(dtype, non_blocking=False) :noindex:
.. function:: to(tensor, non_blocking=False) :noindex:
.. function:: to(memory_format=tensorplay.channels_last) :noindex:
Its signature is similar to tensorplay.Tensor.to, but only accepts floating point or complex dtype\ s. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.
See below for examples.
INFO
This method modifies the module in-place.
Args
- device (
tensorplay.device): the desired device of the parameters and buffers in this module - dtype (
tensorplay.dtype): the desired floating point or complex dtype of the parameters and buffers in this module - tensor (
tensorplay.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module - memory_format (
tensorplay.memory_format): the desired memory format for 4D parameters and buffers in this module (keyword only argument)
Returns
- Module: self
Examples
# xdoctest: +IGNORE_WANT("non-deterministic")
linear = nn.Linear(2, 2)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]])
linear.to(tensorplay.double)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
[-0.5113, -0.2325]], dtype=tensorplay.float64)
# xdoctest: +REQUIRES(env:TENSORPLAY_DOCTEST_CUDA1)
gpu1 = tensorplay.device("cuda:1")
linear.to(gpu1, dtype=tensorplay.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16, device='cuda:1')
cpu = tensorplay.device("cpu")
linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
[-0.5112, -0.2324]], dtype=tensorplay.float16)
linear = nn.Linear(2, 2, bias=None).to(tensorplay.cdouble)
linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],
[ 0.5593+0.j, -0.4443+0.j]], dtype=tensorplay.complex128)
linear(tensorplay.ones(3, 2, dtype=tensorplay.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=tensorplay.complex128)to_empty(self, *, device: Union[str, tensorplay.Device, int, NoneType], recurse: bool = True) -> Self [source]
Move the parameters and buffers to the specified device without copying storage.
Args
- device (
tensorplay.device): The desired device of the parameters and buffers in this module. - recurse (
bool): Whether parameters and buffers of submodules should be recursively moved to the specified device.
Returns
- Module: self
train(self, mode: bool = True) -> Self [source]
Set the module in training mode.
This has an effect only on certain modules. See the documentation of particular modules for details of their behaviors in training/evaluation mode, i.e., whether they are affected, e.g. Dropout, BatchNorm, etc.
Args
- mode (
bool): whether to set training mode (True) or evaluation mode (False). Default:True.
Returns
- Module: self
type(self, dst_type: Union[tensorplay.DType, str]) -> Self [source]
Casts all parameters and buffers to dst_type.
INFO
This method modifies the module in-place.
Args
- dst_type (
type or string): the desired type
Returns
- Module: self
zero_grad(self, set_to_none: bool = True) -> None [source]
Reset gradients of all model parameters.
See similar function under tensorplay.optim.Optimizer for more context.
Args
- set_to_none (
bool): instead of setting to zero, set the grads to None. Seetensorplay.optim.Optimizer.zero_gradfor details.
