Skip to content

TensorPlayTransparent AI Architecture

A learner-friendly, PyTorch-compatible deep learning framework designed to demystify neural network internals and facilitate custom hardware experimentation.

TensorPlayTensorPlay

START LOCALLY

Select your preferences and run the install command

TensorPlay Build
Package
Compute Platform
Run this Command:Copied!
pip install tensorplay --index-url https://download.tensorplay.cn/whl/cu130

The TensorPlay Ecosystem

A collection of libraries designed to be used together or independently.

P10

The core calculation engine. Provides a clean, readable implementation of memory management and basic tensor kernels.

Design Philosophy →

TPX

The explicit autograd layer. Designed for those who want to understand or modify how computational graphs are built.

Design Philosophy →

Stax

The optimization playground. Experiment with operator fusion and static graph capture in a simplified environment.

Design Philosophy →

NN

The modular business layer. High-level components (Linear, Conv2d) that serve as blueprints for your own network layers.

Design Philosophy →

Latest News

Stay updated with our latest blog posts and research highlights.

TensorPlay 架构设计:为什么选择四个核心库?

深入探讨 TensorPlay “解耦优先”的设计哲学。通过将框架拆分为 P10、TPX、Stax 和 NN 四个独立且职责单一的库,我们实现了灵活性与高度可定制性的完美平衡。

深入 P10 核心:Dispatcher 与硬件抽象层

揭秘 TensorPlay 如何在底层实现跨硬件的算子调度。通过 Dispatcher 机制与 TensorImpl 模式,P10 能够以极低的延迟将计算任务分发至最合适的硬件后端。

TPX 自动微分:如何实现计算与梯度的完美解耦?

传统的 autograd 往往深度嵌入计算逻辑。TPX 采用了一种全新的“透明扩展”模式,在完全不侵入 P10 计算逻辑的前提下,实现了灵活的动态图追踪与梯度回传。

Released under the Apache 2.0 License.

📚DeepWiki