快速开始
这里有一个简单的例子,展示如何使用 TensorPlay 定义神经网络并进行训练。
python
import tensorplay as tp
import tensorplay.nn as nn
import tensorplay.optim as optim
# 定义一个简单的网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.fc2 = nn.Linear(20, 1)
def forward(self, x):
x = tp.relu(self.fc1(x))
return self.fc2(x)
# 初始化模型、损失函数和优化器
model = Net()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 模拟数据
input = tp.randn(32, 10)
target = tp.randn(32, 1)
# 训练循环
for epoch in range(100):
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f"Epoch {epoch}, Loss: {loss.item()}")