Quickstart#
Here is a simple example of how to use TensorPlay to define a neural network and train it.
import tensorplay as tp
import tensorplay.nn as nn
import tensorplay.optim as optim
# Define a simple network
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.fc2 = nn.Linear(20, 1)
def forward(self, x):
x = tp.relu(self.fc1(x))
return self.fc2(x)
# Initialize model, loss, and optimizer
model = Net()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Dummy data
input = tp.randn(32, 10)
target = tp.randn(32, 1)
# Training loop
for epoch in range(100):
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f"Epoch {epoch}, Loss: {loss.item()}")