Quickstart ========== Here is a simple example of how to use TensorPlay to define a neural network and train it. .. code-block:: python import tensorplay as tp import tensorplay.nn as nn import tensorplay.optim as optim # Define a simple network class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 20) self.fc2 = nn.Linear(20, 1) def forward(self, x): x = tp.relu(self.fc1(x)) return self.fc2(x) # Initialize model, loss, and optimizer model = Net() criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # Dummy data input = tp.randn(32, 10) target = tp.randn(32, 1) # Training loop for epoch in range(100): optimizer.zero_grad() output = model(input) loss = criterion(output, target) loss.backward() optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")