Skip to content

WARNING

该页面尚未翻译。 以下内容为英文原版。

tensorplay.stax

The stax module provides static graph optimization and acceleration for TensorPlay. It allows users to capture a sequence of operations and compile them into an optimized execution graph, similar to torch.compile.

Key Features

  • Graph Capturing: Intercepts p10::Tensor operations to build a static representation of the computation.
  • Operator Fusion: Automatically fuses common operation sequences (e.g., mul + add) to reduce memory bandwidth and kernel launch overhead.
  • AOT/JIT Compilation: Supports both Ahead-of-Time and Just-in-Time compilation strategies.

Classes

class ProxyTensor [source]

python
ProxyTensor(tracer, node, shape=None, dtype=None)
Methods

__init__(self, tracer, node, shape=None, dtype=None) [source]

Initialize self. See help(type(self)) for accurate signature.


class PythonGraphExecutor [source]

python
PythonGraphExecutor(tracer)
Methods

__init__(self, tracer) [source]

Initialize self. See help(type(self)) for accurate signature.


record_node(self, kind, args, output_val) [source]


run(self, env) [source]


class Tracer [source]

python
Tracer()
Methods

__init__(self) [source]

Initialize self. See help(type(self)) for accurate signature.


create_input(self, tensor) [source]


record(self, kind, *args) [source]


Functions

compile() [source]

python
compile(func)

fused_mul_add_impl() [source]

python
fused_mul_add_impl(*args, **kwargs)

patch_tensorplay()

python
patch_tensorplay(tracer)

robust_add() [source]

python
robust_add(a, b)

robust_div() [source]

python
robust_div(a, b)

robust_mul() [source]

python
robust_mul(a, b)

robust_pow() [source]

python
robust_pow(a, b)

robust_sub() [source]

python
robust_sub(a, b)

基于 Apache 2.0 许可发布。

📚DeepWiki